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Abstract—A model of elastic transversely isotropic porous materials 1s presented [t may have
applications with cancellous bone. The arrangement of aligned spheroidal pores is obtamned
through a homological transformation from Hashin's composite-sphere model. The volume
fraction C of the matrix 1s assumed small Two extremal variational principles of the theory of
elasticity yield some inequalities or bounds for the derivatives with respect to C at C = 0 of
five macroscopic moduh. By using inhomogeneous stress boundary conditions for a hollow
spheroidal element, the bounds are considerably improved. They coincide with the upper bounds
for spherical pores. The bounds for the derivatives with respect to C at C = 0 of five modul,
obtained from a kinematically admissible displacement, are of a simple form and can be used
for an approximation to five macroscopic moduli for C < 1.

1. INTRODUCTION

Cancellous bone consists of a network of hard interconnected filaments called trabe-
culae interspersed with marrow. We could simply look upon a cancellous bone as an
anisotropic composite material consisting of a relatively stiff viscoelastic bone matrix
with pores of complicated shapes filled with a relatively weak viscous marrow.

To simplify, we neglect the stiffness of marrow and approximate the pores
by aligned similar spheroids. The matrix material is considered isotropic and linearly
elastic, and only the case of a high porosity (C < 1) is dealt with in this paper.

For a special arrangement of elastic isotropic spherical inclusions in an elastic
isotropic matrix called the composite-sphere model, Hashin[1] obtained the exact mac-
roscopic bulk modulus k and bounds for the macroscopic shear modulus i for any
volume fraction ¢ of inclusions. For spherical pores the bounds for & were given in
[2]. eqns (3.25), (3.26), in the simple explicit form

pSE=sp,
' {1 _ (1501 - w7 = 5V ¢ }
m [+ c[24 - 5VIT - Sv) - (12607 + 50 (7 - sl 6@l ¥ (1.1
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p and v are the shear modulus and the Poisson ratio of the matrix. For ¢ < 1, y/, p",
I can be written in the form
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For ¢ — 0 we have from (1.1),

Blo=o = po = ni.

Subtracting w in (1.1), and dividing by ¢, we get forc — 0

Sl_& = lLI - IL"
dC (=0 1 |
Denoting by C the volume fraction of matrix, substituting ¢ = 1 ~ C into (1.1) and

expanding pnL(C) = w/(c), pY(C) = n"(c) and w(C) in powers of C for C < 1, we
similarly get

pUC) = uf + piC + 0(CY), YO0 = pd + nlC + 0(C?,

MO = | . 9B C + 0(C?), (1.2)

C=0 dC C=0
50 + v) 7 = Sv
Lo U = L2 TV v LV
Mo =wo =0 W =ggTEy e M T g o gt
which results in
a5
o 3 L - - U. .
Ble=o =0, pi=<gz g S (1.2)

For —1 < v < 1/2 we have p{ < pV, and the situation differs from the case ¢ < |
(see Fig. 1). For fixed p, v the curves p'(c), p“(c) have the same tangent at ¢ = 0 but
different tangents at ¢ = 1 (C = 0). Thus, the bounds (1.1) for g(c) yield the exact
di/dc |, =0, but only bounds for di/dC |c-o.

W

0 1

Fig. |. Bounds (1 1) for & from [2]. Spherical pores. v = 03
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In Section 2, a special arrangement of similar and aligned spheroidal pores is
defined. It is obtained by a homological transformation from a hollow-sphere assem-
blage[1]. Kinematically and statically admissible fields of the displacement and the
stress are chosen using homogeneous boundary conditions for the displacement and
the stress vector}!] on the boundaries of holiow elements, respectively. These admis-
sible fields also satisfy the condition of zero stress vector on the surfaces of pores. For
a high concentration of pores (C = | — ¢ < 1) the energy of this kinematically admissible
field to O(C) and that of this statically admissible field to O(C~') are obtained in
Sections 3 and 4. For the statically admissible field much prolate or oblate spheroidal
pores must be excluded. The theorems of minimum potential energy and minimum
complementary energy vield then some inequalities or bounds for the derivatives with
respect to C at C = 0 of five macroscopic moduli. In Section 6 by using certain
microscopically inhomogeneous axially symmetric stress boundary conditions for the
statically admissible field, the bounds for the derivatives of three moduli are im-
proved considerably. In the case of spherical pores this improved lower bound for dj/
dC |c=o coincides with the upper bound yielding for diw/dC at C = 0 the exact value
given by pV in (1.2).

2 MICROSCOPIC ARRANGEMENT OF PORES AND VARIATIONAL PRINCIPLES

Assume that a porous material can be divided into hollow elements € shown in
Fig. 2. At the centre of each element € one spheroidal pore is situated. The outer and
inner surface of each ¢ are aligned similar ellipsoids of revolution. All € are similar,
and their sizes can vary to infinitesimal values. The material is constructed by filling
a body with such parallel-oriented elements firmly connected at the points of contact.

The existence of such an arrangement is given by that of the composite-sphere
arrangement[1]. In fact, the former is obtained from the latter by setting a correspond-
ence of points P — P', P = (x¥, x%, x9), P’ = (x9, x8, kx9), where k = const. and
x? are the Cartesian coordinates. For k # 1 similar and aligned spheroids correspond
to spheres, points of contact of neighbouring spheroids correspond to those of neigh-
bouring spheres and the volume fraction of pores is preserved in all elements.

Let us have a body V with a boundary § containing a large number of elements
€. Two boundary-value problems in V are considered:

u) = E3x) on S, 2.1
9= 8% on S. 2.2

u?, 12, n? denote the displacement vector, the stress vector and the unit outward normal
to §, respectively. In what follows, the upper index 0 denotes a Cartesian component.
o+ Sy, are given constant symmetric tensors. Then E?, and S? are the volume average
strain tensor €, and the volume average stress tensor G, for the boundary-value prob-
lems (2.1) and (2.2), respectively. If for any sufficiently large subregion V' of V, €,
o for the problems (2.1), (2.2) are not changed, the material is called macroscopically

homogeneous. The macroscopic moduli C% and compliances D%, are then defined
L

by

o = Cowel, €)= Dludl. 2.3

The elastic strain energy density W of the composite material (here we deal with a
composite of a special type—a porous material) for problem (2.1) is

W = §COuELED, (2.4)
and for problem (2.2)

W = §D%:S9S%. 2.5)
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Fig 2 Microscopic geometry of pores

If the forms (2.4), (2.5) are positive-definite, the principle of minimum potential energy
for problem (2.1) gives

W — wW=0, (2.6)
where W denotes the strain energy density of the composite for a Kinematically

admissible displacement field. The principle of minimum complementary energy yields
for problem (2.2) is

W — wW=0, 2.7
with W'’ being the strain energy density of a statically admissible stress field.
Assume that the arrangement of aligned hollow elements € is such that the porous

material is macroscopically homogeneous and transversely isotropic with the x%-axis
as that of isotropy. We write Hooke’s law (2.3); in the form

& = Chel + Ched + Ched, T = 2ChLEh,

% = Cheli + Chieh + Cheds, % = 2C%ed, (2.8)

% = Chell + Cheh + Chels, &% = (€Y — Chelh:
with five independent macroscopic moduli

{C}. €2, Chs. Ch, CU} = B°.
(2.4) takes the form
W = $CH(ER + E) + 1ICHER + CLENES:
CH(EY) + E9)ES: + 2CL(ER + ER) + (C)) — CIDER.  (2.9a)

We introduce the following notation for the form of this type:

W = F(E", @Y. (2.9b)
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(2.9) is positive-definite if and only if

Cl + Ch >0, C4% >0, Cli >0, (2.10)
cY - C%h >0, CH(CY + CY) > 2CH.
If (2.10) holds, (2.8) can be inverted into
& = D}\aYi + D%25% + DY)5%, € = 2D%et,
& = D%aYy + DY,6% + D%ads, € = 2D%0cY, (2.1D)
& = D%l + Do + Do, & = (DY - D%)o%..
where for the five macroscopic compliances
{B(I)I ’ B(I)ZV 5(I)Zh 5(3)3v -D_(4)4} = g—bo
we get
Ho no 1 0
DY, + DYy, = F_Csa,
c
_D_?l - l_)(l)z = !
ch - CY°
— 1 — _
DY = — (Ch + Ch),
Fc (2.12)
— 1 —
0 - _ 70
13 FC C|3,
— 1
0 —
Das 4CY%°

Fc = C%(CY + Ch) — 2C%.

The inverse relations are

T+ T = Fl; DY, T = FLD D% + D%,
Th= - - DW).  Fo=DW(D% + D% - DR =7 .13
(2.5) has the form
W = F(S5%. 2. (2.14)

3. STRAIN ENERGY DENSITY OF A KINEMATICALLY ADMISSIBLE FIELD

Consider an arbitrary hollow spheroidal element €. At its centre £ introduce a

local Cartesian coordinate system x{ with the £$-axis lying in its axis of symmetry (Fig.
2):

=0

! 1Y)

= x{ — £,
The length of the semiaxis of symmetry of the pore is denoted by ¢, that of its transverse

SAS 22°3-F
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semiaxis by a. a defined by

a = alc 3.1

defines the shape of the pore and is constant for all €. The spheroidal coordinates r,
9, ¢ are defined by

x0 = drcos ¢ sin 9, ¥y =drsmesind, i8 = ércosd. (3.2)

We introduce the notation
g =r, =9 €=0¢. (3.3)
In what follows, the tensor components not having the upper index 0 are referred to
the local curvilinear coordinates &. For the surface B of the pore 1t is §' = 1, for the

outer surface B of € itis &' = 1 + d, d = const. In this paper we assume a small
volume fraction C of the matrix, i.e.

c<l. (3.4)

We easily find
d = 4C + 0(C?). (3.5)
We follow Hashin[1] in choosing a kinematically admissible displacement. Let the
displacement vector on B of all € be given by (2.1). Such a displacement would be

there if the material were homogeneous. (2.1) yields €qp (@, B = 2, 3) on B in the form

ax? ax?
= 0 2t 74
€ap = EY, % 3P (3.6)

On the surfaces of the pores the stress vector equals zero, i.e.

o =0 or ol =o'%g, =0 on B, 3.7
where g,, is the metric tensor
xR a5k
, = — == 3.8
gl agl ag/ ( )

(2.1) and (3.7) formulate a boundary-value problem for any € cut off the material. As
all € are similar, aligned and (2.1) homogeneous, the stress and strain tensors in the
corresponding points of all € are the same. The displacement obtained by solving this
problem for a single ¢ yields a kinematically admissible field in the whole body V. W'
is obtained by

W = Wi Vg, 3.9)

where W¢' and V, are the strain energy and the volume of any €, respectively. W’
must be of the same form as W in (2.9a,b), i.e.

W = F(E?, €), €° = {CV. Clh, Ch, C%s, Cla}. (3.10)

The strain energy W, of € is
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- fﬂ wVg dE' A& 48,  w = jo'e,, g = det g,,. 3.11)

The integral in (3.11) is taken over the matrix jacket of ‘€. Hooke's law for an isotropic
matrix is

o = 2u (1 _"zv dleb + e;) : (3.12)

where 8, is the Kronecker delta.

We shall find W or the coefficients €° to O(C) or O(d). Let us choose fixed £,
£ and consider a point €= (1, &, &) on B and the corresponding point £ = (1 + d,
£, £*) on B in a chosen €. Using the Taylor expansion of o' at £ and (3.7), we have

o [t = O(d). (3.13)

Inserting (3.13) into (3.12) written at £ for i = 1, we get three linear equations for €,
€12, €;3. The solution is

1
(l - v)g“e” = —,,'(ezzg'z 12 + 2&2 glz 13 + 233313813)
g (3.14)
— Ue2g? + 2€387 + €3327) + 0(d),
g'le2 = — €2g'? — €38" + 0(d),
. ot' of’
gl'e;s = — €3g8" — €38 + 0(d), gY= xR

All functions in (3.14) are taken at § Substituting again (3.14) into (3.12), we get o8

for a, B = 2, 3 at £ to O(1). Then w* at £ of this kinematically admissible field can
be obtained in the form

2

1 _’f ” ETRH (€22833 — 2€23823 + €33822)°

‘V(") =

+ 2”‘57 (€3, — enes3) + O(d), G = detg” = (3.15)

1
o

To calculate W§” to O(d), we shall use (3.2), (3.3), (3.8), (3.14)4, (3.15), 3.11), (3.6),
(3.9) and

€'
L’- wVE dE' = wV3) i d + O(d?). (3.16)
By writing in (3.10)
@° = 9'°C + 0(C?H), €' ={Clf, Ci8 Ci§ Ci§, C4l., (3.17)
it is
W = F(EY, €'9C + O(C?). (3.18)

%' are calculated by considering three deformation states:
(o) EYy = E‘zz # 0, EY; # 0, all other E} =0,

(B) E% = E%; # 0, all other EY, = 0,

(y) E%2 = EY, = 0, all other EY =
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Using (3.2), (3.3), (3.8), (3.14)4, (3.6), (3.15) and (3.5), we get w' at £ € B of these
deformation states in the form

l 2
Ws:;)) = % I:? ((le(h C()S2 v + Eg:; Sin2 13) + E?I:I
2 . ) .
- —;’ (a®ET; cos®* 9 + EVES; sin® 9), T =sin® 9 + a’cos? 9,
(3.19)

RER a” 2 2 2 2 2
wig) = - E—l—-_—_—;)—]—,sm ¢ sin® ¥ cos* Y + 2cos*psin? Y|,

E% 4 ) .
wi) = ”‘—T‘—z [(1_—7)? sin® ¢ cos? ¢ sin* 9 + 2a? cos? 1‘)] .

Through (3.11), (3.16), (3.19), (3.9), (3.17), (3.18), (2.9a,b) we have for a # |

Cl 4+ Cl = | {302(2f!2 - 1) + 2(a? - 1)? - a*(7a? - 4)Z

a? -1 20 -v) (@ -1
+ 20%(Z - ])},
2 2.2
0 _ oo B a’ + 2 + a*(a® — 4)Z 2y
- et - e {Sr e e a)
o _ B 3a*Z - (50 - 2) s
cis az—l{Z(l—v)(a2—1)+l cZf.
8 =5 ’(*az —fel + 2+ afle? - 42},
2 2
0 - B a[(a® + 2)Z —~ 3] 25
Cas 2(a2—1){(1—v)(a2—1) toZ-1g,
where
Z= —l————arctan Va2 — 1 for a«>1, 3.2hH
2 -
Vo -
1 I+ Vi -2
Z=\/_l_____zln . for a<1. (3.22)
- Q

o 1s a shape parameter of pores defined in (3.1). The case (3.21) corresponds to the
pores in the shape of flattened spheroids, (3.22) to those of elongated ones. In deducing
(3.20), we assumed a # 1. a = 1 refers to the spherical pores. By taking the limit «
— 1" in (3.20), (3.21) and o — 1~ in (3.20), (3.22), we get the upper bound (1.2) for
dw/dC at C = 0 and the exact dk/dC at C = 0 consistently with [1].

4 STRAIN ENERGY DENSITY OF A STATICALLY ADMISSIBLE FIELD
In this section we follow Hashin[1] in choosing a statically admissible stress field.
Set the stress vector 1 on B of all € be given by (2.2). It is

T =TT on E. (4”
4 OX)

These stress components would be there in the case of a homogeneous material On
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the surface of the pores condition (3.7) is satisfied. Again, a boundary-value problem
15 defined for any ¢ cut off the material and the stress field obtained by solving this
problem for one € yields a statically admissible field in the porous material.

(3.12) can be solved for € to give w defined 1n (3 11) the form

i v
w = o (0}0‘{ TS (r’icf) . 4.2)

To calculate the strain energy W4 of € to O(d™ '), we see from (3.16) that w must be
found to O(d~?), and from (4.2) that o’/ must be known to O(d™'). If the distance of
any two corresponding points §, £ is small in comparison with the dimensions of € and
with the main radii of curvature of B at £ and B at & the classical theory of thin shells
yields the result that W is given to O(d~') by the work of the membrane forces only.
The above-mentioned conditions are not satisfied for much prolate or much oblate
spheroidal elements For the curvilinear coordinates &' this work is done by the com-
ponents 6>, 0**, a** taken constant for &' € (1, | + d). They can be found from the
cquations of cquilibrium

o'ul + OAJFIU + Ukr.ij ; I‘{\/ = ig“(g:u + 8t — 8.1./)- (4-3)

Here a comma followed by an index denotes partial differentiation with respect to the
corresponding &’. Using (3.7), we write to O(d™")

ot =d 'o" |z (4.4)

Introducing (3.7), (4.4) into (4.3) written at a point £ € B, we get three differential
equations in £2, £ for 022, o2, 0. As ¢ is closed, we have no boundary conditions
for this system, but we can use the condition that the physical components %2, 6%,
%, ¢** must be bounded. 02, 0%, ¢ obtained in this way give us through (4.2),
(3.11), (3.16), (3.9) W to O(d~'). In contrast to the kinematically admissible field
introduced in Section 3, however, this accuracy for W'® is not guaranteed for very
prolate or oblate spheroidal pores. W is a quadratic form in S?, of the same type as
W given in (2.14), i.e.

W = F(S5),92%, @° = (D%, D%, DV, DYs, D%}. 4.5)
Define &'° by
C2° = @ + 0(C), @' = {DI%, DY, DS, D3, DY}. (4.6)
Then
CW = F(§%, 2') + 0(C). 4.7

@' are calculated by using these three stress states:

(@) 7 = §% # 0, §% # 0, all other §?, = 0,

(B) §%; % # 0, all other S}, = 0,

(v) S0 = S # 0, all other Y = 0.
The nonzero Christoffel symbols I'f, defined in (4.3); are obtained through (3.2), (3.3),
(3.8), (3.14), as

r%z = F%I = F? F;. = 1/r, Fiz = -1 F§3 = — rsin? 9,
%, = — sindcos 9, I3 = ' = (cos V)f(sin ¥). (4.8)

Substitute (4.8), (3.7), (4.4) into (4.3); written at a point E € B. After excluding o3,
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we get (4.3), in the form

2cos cos ¥
L%'& + 0.22 = d-l 0'” - 0.12)

s
N

+
q

sin 9 sin 9 i
\ 1 \ 3cosd 1
2 _ 2 248V by o 3 1
T O T o © d (0 T onto 0 ) a 49
1 )
0.33 = m (d—lo,ll - 0.2..) 'E'
Furst, we find 0?2, 0%, ¢ for the stress states (a)~(y).
(a): Through (4.1), (3.2), 3.3) o' at £ € B are
V] 0
o' = §_—'21 sin? ¥ + S._323 cos® 9,
a ¢ (4.10)
S 8%\ sin dcosd
12 _ (21 _ 9233} SIDVUCOSY 13 -
7 (d’ 62) T+a * =0

From axial symmetry it follows that

0¥ = ol = o3 = 0.

By substituting (4.10) into (4.9), we get the following equation for o?:

a
o B 2¢os 8 ,, _ Sicosd
sin 9 éd sin 9

The general solution 1s

2__m_ 5%
sin? 9 263’

where m 1s a constant. The physical component ¢**is for r = 1

v 2 (82\' .., (@2 cos?d + & sin? \'?
g =0 > = 3T =3 3
g assin® 9 + ¢°cos* 9

If 622 1s bounded, then o?? 1s also bounded, which yields m = 0. From (4.9); we get
to O(d™")

59 1 [289, 8% [cos?d
022=§;id, 0‘33=ﬁ[—é¥+-§2—3(m—1)], o =0. @l

(B): Through (4.1), (3.2), (3.3) we get ¢' at £ € B:

St . he )
o' = =2 cospsindcosd, ¢'?= :—_—'—J—-ﬂ (cos? 9 - sin? 9),
ac ac(l + d)
4.12)
o = St sin ¢ cos B

T aél + d)ysino

By substituting (4.12) into (4.9), we see that the shape of pores enters the system (4.9)
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through the coefficient 1/a¢ on the right-hand sides of (4.9) only. Therefore, except for
this coefficient the solution of (4.9) 1s the same as that for a thin spherical shell. In [3]
a solution to the equations of equilibrium for constant thickness membranes of revo-

lution for a wind-type loading is given. (4.12) is of that type. Hence, we seek a%2, g%,
** in the form

a® =0, o' = Ksing, o¥ =d"'@)cos ¢, 4.13)
with K being a constant. By substituting (4.12), (4.13) into (4.9), we get to O(d™")

n _ Shising 289 cos ¢ cos 9

=0, o¥ , o¥ = - 4.14
¢ 0. o T acd 7 acd sin 9 .19
(v): Through (4.1), (3.2), 3.3) weget at £ € B
St . . 59 . 3
o el 2 13 _ 2 . cind
c 7 sinpcos g sin“ 9, o 70+ d) {cos® @ — sin” @),
(4.15)
259, \ ,
12
a0+ d) sin ¢ cos ¢ sin 9 cos .

Substitute (4.15) into (4.9) and again make use of a solution for a spherical membrane
of radius & and thickness ad. Introduce new coordinate systems %% £ orr', %', ¢'

] =x° B =50 B =-x
gll - rl P f gi = 'ai, §43 = ‘Pi’

= gdrcos ¢’ sind’, £° = drsine’'sind’, %= drcos¢’.

’

i®

The shear stress in the #3%3-plane of the £° system corresponds to that in the £;°#°-
plane of the £/° system. Analogously to (4.14), for @ = ¢, we have

o2 = 0. o = §i3 sin ¢’ o™ = 2513 cos ¢’ cos 9’
’ ad '’ @d sin ¥’

(4.16)

o' are taken in the £” system, S:° in the /° system, i.e. 13 = §%2. 0%, 0®, ¢ in
1he ¢ system are

og' o¢’ 9 o o}
J = gkt 595 = 4.17
o =0T kT aaE @.17)

By using @ = ¢, (4.16) and (4.17), we get to O(d™")
250 %2 cos 9
7o =8 3, 22V 2 5 — sin?
4 sin ¢ cos ¢, o 2d sin 9 {cos® ¢ — sin” ¢},
(4.18,
w_ _ 25hcos’d

- ————=—— sin @ COS ¢.
a*d sin® 9 M ?

Now, (4.11), (4.14), (4.18) yield through (4.2), (3.11), (3.16), {3.9), (4.5)~(4.7)
(2.9a,b)
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6
10 10 R
DII + Dlﬂ 5([ n v)p'.
1~ DIY = 3a’(3a” + 2) (1 + v) + 2]
' i 10a*(] + v)p ’
31307 + v(e® + 4)]
10 = —
o 201 + vu (4.19)
DY = 3|5a* + 20® + 4 — vai(a® - 6)]
t 200 + v ~
DY = 33> + 4 + va® + 4)]
20(1 + v)u

By setting o = | (spherical pores) in (4.19), we get through (2.2), (4.5)-(4.7), (2.9a.b)
the lower bound (1.2) for di/dC and the exact dx/dC at C = 0 consistently with [1]

5 BOUNDS

Insert (3.10) with the help of (2.9a,b) into (2.6). The left-hand side of (2.6) 1s a
non-negative quadratic form of EY,. Condition (2.6), valid for any E?, = EJ, is equivalent
to all the principal minors of the matrix of this quadratic form being non-negative,
which is the case if and only if

CH+ChsCh+Ch ChsCh,
CH-ChsCh-Ch  Ths<Clh, (5.12)
(Ch — CH)(Ch + Ch — T — Ch) = ACYH - ChY.

In the same way, inserting (2.14), (4.5) into (2.7), we get
DY, + DY, < DY, + DY,, etc.t (5.1b)

By using (2 12), (2.13), (5.1a,b), the following bounds for C9, + Ci., C}, — C¥..
CY., CY4, CYs are obtained:

— s Cl < CL, (5.2a)

1 2C%
C°. % + C%

|C|3 - ChH|=HC%h - CH)(CH + C% - C — C'%

= C33 = C33’

and the analogical bounds for DY, + D%,, DY, — DV, D%, D44, DY are
] 2D(l2
—_— + =— = + = DY, + DY, etc.t 5.2b
L Ch + D% D 1) D|2 1] 12, €IC ( )

1 (5 1b), (5 2b) and (5 5b) are obtained from (5.1a), (5.2a) and (5 5a), respectively, replacing formally C
by D and D by C.
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In deducing (5.2a). we did not use (5.1b)st and in deducing (5.2b), we did not use
(5.1a)s. Therefore, if a €° meets (5.2a), then @ obtained from this €° through (2.12)
meets (5.2b), » 1 4.7 but need not meet (5.2b)s.t Define

7]
gw = [Tl cu cre T Ty =35
dC =0
i.e.
=0 dCY =0 4C%
10 .. 10 ..
cH aC lceo . Ciy dC lcwo . etc.
and
@' = {DIY, D4, Di3, DY, Di3} = Limo a0
Then
§° = §'°C + 0(CY), (5.3)
Ca° = @' + 0(C). (5.4)
Substltutmg (3.17), (5.3) into (5.2a) and dividing by C, we get for C — 0 the bounds
for C + C (2)’ C}(l) - C}gv C:lig, C129 C=g'
1 2] —
DR+ DE Ty S Ci+ ciEsCit+ci,
11 2 33
7 < Clf - T =it - it
- 1
41;10 = C¥=Cl, (5.5a)
44
102
o B cTescn,

< [(CY - Ci) (CH + Cm -l - cpa.

Introducing (4.6), (5.4) into (5.2b), we similarly get the bounds for D|} + Di¢, D¢ -
DH) D."‘ D}‘g‘ D")

| ZDIOZ — —
m + —— D}“ < DI + D|¥= D! + D8, etc.t (5.5b)
] 12 3

Again, if 2 €'° meets (5.5a), then @'° obtained from this €'° through (2.12), (5.3), (5.4)
meets (5.5b);.2.3.4.7 but need not meet (5.5b)st. Thus, (2.6), (2.7)_give the following
restrictions on €'°: €'° meets (5.5a) and @' obtained from this €'° through (2.12),
(5.3). (5.4) meets (5.5b)s. The restrictions on @' are analogical.
We see in (5.5a) that the bounds for C}$ and the lower bounds for Clf + C|$ and
C 18 depend on some other C'°. A similar assertion is valid for the comphances Consider
a three-dimensional space (C{" + Cl%) x C1§ x Cl9. Let Rc denote a set of all pomts
{C 1 + Cl8, C13, C19} satisfying (5.5a), «.s. The cross-section of Rc by the plane C}}
+ Cli§ = C’ = const., C' € (1/(D}§ + DI$), Ci$ + C}9), is generally bounded by three

t (5.1b), (5.2b) and (5.5b) arc obtained from (5.1a), (5.2a) and (5.5a), respectively, replacing formally C
by D and Dby C
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FI0 -
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0.5 -
C/;o/"-1 =
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// // V=03
// // «=02
! [ Ceelr=135u
| .
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I - : .
(0fuft208 (EOu)'=225 27 Cou'=2.5

Fig. 3. Cross-section of Rc and Rc by the plane Ci$ + Ci8 = 1.35 pforv =03, a = 02

=10 Clﬂ -1
“ (Cﬂ + 2 )(u' h F
1.5
(Cr+C)u
v=03 T|
a =02 l
~10 -
Cm-o'l'fu' hy 0 g
y ) C:J/l-
2 25 [Py t=259

Fig. 4. Cross-section of Rc and R¢ by the plane Cl§ = 0.4 pforv = 0.3, a = 0.2

parabolas p,, p2, ps with the axes parallel to the Ci§-axis. In Fig. 3 this cross-section
(bounded by p2, ps only) is shown for v = 0.3, a = 0.2, C{f + Ci$ = 1.35 . Similar
are the cross-sections of Rc by the planes C13 = const., while those by the planes
C|? = const. are generally bounded by three hyperbolas A, k2, hs with their asymptotes
parallel to the C3- and (Ci{ + Ci9)-axes. Figure 4 shows this for v = 0.3, a = 0.2
and Ci9 = 0.4 p.
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6. INHOMOGENEQUS STRESS BOUNDARY CONDITIONS FOR HOLLOW
ELEMENTS

In the preceding sections the boundary conditions (2.1) or (2.2) were considered
on the boundary S of a body V. EJ,, S!, were constant tensors. Admissible fields were
constructed in V with the displacement and the stress vector on the surfaces B of all
€ also given by (2.1) and (2.2), respectively. In this section we relax condition (2.2)
on B and find a more gencral admissible stress field. Only the case axially symmetric
to x4 axis is considered here. Let V and V' C V be two aligned spheroids of the same
a, both centered at x! = 0 with their axes of revolution lying in the x3-axis. Let § and
S’ be the boundary of V and V', respectively. By AV we denote the part of V for
which § is the outer and S’ the inner boundary. Introduce in V the global spheroidal
coordinates R, ©, ®, which are in the same relation to x?as r, 9, ¢ to ¥ in 6. For S
itisR =1+ DandforS',R = 1. Let D < 1. As in Section 2 fill out both V' and
AV with aligned hollow spheroidal elements € of the same a oriented parallel to V.

Let the stress vector 1? acting on S be given by (2.2), where the nonzero components
of S, are

St = S‘z’z = 6?| = -O_'gz = const., S‘;’; = '623 = const. 6.1)

¢ acting on B of all € inside V' is chosen in the form

0 = §%n?,
§% = Y'sim?@sin2d + Y cos?d + ¥,
§% = Y"cos?¢sin?d + Y cos?d + ¥, (6.2)
S$% = X'sin® 9 + X, §9 = — Y"sin ¢ cos ¢ sin? 9,
$% = Vcososindcosd, 5% = Vsin g sind cos 9.

Y. Y. Y, X, X', Vare constants to be determined later. §, in (6.2) depend in a simple
way on 9, ¢ and meet the conditions of symmetry with respect to the coordinate planes

%0x) and to the $-axis. In fact, using (4.1), we have on B

a’o'' = (U; + o®U,) sin® S cos? ¥ + Ysin? 9 + o®X cos? 3,

(1 + d)a*o'? = [(U) + a?Uz) cos® Y + Y — o’X — o?U,]sin D cos 9, (6.3)

13

o' =0, Ui =Y +aV, U: = X' + (ll)V.

Notice that o' do not depend on ¢. For any € cut off the material the equations of
equilibrium (4.9) and (6.3) yield, in the same way as in the case («) in Section 4, 022,
o, o® to O(d~') in the form

22

5-512—2()( + 3 Ussin?9), o2 =0,

¥ = -Z'-ajzdlm—a [Z(Ul + o?U,) sin® 9 cos? & (6.4)

2
+ (ZY - 202X ~ % Uz) sin? 9 + u2X] .
Any point of S’ is a contact point of S’ with a B of some €, and for this point it

is® = ©, ¢ = ®. Thus, Aacting on S’ has the same form as (6.2), only 6, ® must be
written instead of 9, ¢. We see that the surface loads acting on §, S’ or on any B in
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V' are in cquilibrium. B are not loaded As D < 1, AV is a thin boundary layer close
10 S, and the volume integrals of o}, or oi/€, over AV are small with respect to those
over V'. Thus, 1t 18

o
3t =5 [ obav = V(f’cr,,dv

=5 [(:§>f§*+r$")d3. 6 5)
4

Using (6.2), we calculate from (6.5)

6?! = &-{2)2 =Y + %U;, 6"23 =X + ﬁUz, all other &‘?, = 0, (6.6)

Al

By using (6.6), 0??, ¢** in (6.4) can be expressed through &}, 5%, X and Y. only
Similarly to Section 4, W to O(d~") is calculated in the form

M - vN
2%-3-5:7d(1 + v)p’
M = 22[22A? + E? + 2:3QAB + EF) + 3-7(B* + F)} + H,

N = 2[2A(E + 3F) + 3B(E + TF)] + H, ©6.7)
H = 23702XQA + 5B + E + 5F) + 3257a°X?,

A =5G0 - V) +3°@%h - X), B =2AY - 2X) - $a2@Gh - X),
E=%c-1D@%h-X), F=(0-d)X+iGEh-X).

W =

For fixed 6%, = %, &3; and for any X, ¥, W given to O(d~') by (6.7) 1s the strain
energy density of a statically admissible stress field for the boundary-value problem
(2.2}, (6.1) of the spheroid V. As in Section 4, o or l/a are not close to zero. Setting
X =%, ¥ = a0 = 5%, we get from (6.6) U, = U, = 0, and we see that ¢ in (6.3)
are the same as o in (4.10) for the case (a) with (2.2) applied on B.

To obtain the lowest possible W for fixed 39,, @33, we determine X, Y from the
conditions

aW'(c} aw{xr)

X aY =0 (6.8)

By using (6.7), the conditions (6.8) take on the form

{8 + 1402 + 85a*) + va?(22 — Ta®)IX + 2Y11a® + w8 + Ta?)}Y
=2%5{22a® + v(1 + 2a®)}o%: + {5(4 — 2a% + Sa*) + va?(2 + o?)}5h, (6.9)
{Ho? + v(8 + Ta®)lX + 2°Y = 23550, + 5{7a® + v(4 — o?))F%s.

By solving (6.9) for X, Y and inserting into (6.7), W' to O(d™') is obtained as a
quadratic form in &}, ©%. In accordance with the notation in Section 4 we write

CWe = (D19 + DIOFR + 1DNeH + 2D§a),d% + 0(C). (6.10)
DY + DI§, D8, DI are not given here explicitly for any a > 0. Some results of

numerical calculations are shown in Figs 3and 4. _

Let Rc denote a set of all points {C}§ + Ci$, C}. ClY} satisfying (5.5a),.4.s with
DI + D3, DY, DI¢ written instead of D{{ + D}%, D, D!Y. Figures 3 and 4 show
that, for the chosen v, a, R is a small part of Rc. We see that the statically admissible
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stress field constructed in this section for the inhomogeneous stress boundary condi-
tions (6.2) with X, Y determined by (6.8) improves the respective bounds considerably.

An interested result is obtained for the simple case a = 1. In this case the pores
are spherical and the material macroscopically isotropic. Setting 67, = 0% = 0 we
find from (6.9) simply

1+ 5, 4

X 75, i3, Y R— 033 6.11)
We substitute (6.11) into (6.7) and get (6.10) in the form
- +
cwe = U ZWO W) 0 L i), 6.12)

2’11 + V) (7 = 5v)
For this special case W from (2.9a) is
W = §C%a% = (12E)s%,

where E is the macroscopic Young modulus. Inserting this and (6.12) into (2.7) gives
forC—0

dE _ 4l +v) (7 - 5

AC lewo” -V O T 50) (6.13)
Itis
i = 3KE/9 - E). (6.14)
For the bulk modulus k we find from [1]
e ST ©19
(6.13)-(6.15) yield
di _ (7= 5vp

dC o 151 = v)°

which together with (1.2) gives the result

dB
dc

_ 7= 5vm
C=0 15(1 = v) '

Thus, the statically admissible stress field of this section in the case of a = | gives a
lower bound for dg/dC |- that coincides with its upper bound (1.2) obtained from
[2]. Therefore, for C < 1 and spherical pores it is

=T 23 oy,

15(1 = v)

7. CONCLUDING REMARKS

Equations (3.20)-(3.22) give the coefficients of the form W’ of the kinematically
admissible displacement to O(C) for any « > 0. For a — 0 and a — = the pores become
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infinite cylinders and layers, respectively. By taking the limits a = 0, a — =< in (3.20)~
(3.22), the same W to O(C) is obtained as if we calculate W to O(C) directly for
infinite hollow cylinders and layers. W' calculated in Sections 4 and S using the mem-
brane theory are to O(C ™) for not much prolate or oblate spheroids (@ or l/x are not
close to zero).

The variational principles formulated in Section 2 yield some inequalities or bounds
for the derivatives with respect to C at C Oof macroscoptc moduh and compliances
[see (5.5a,b) in Section 5]. Only for )9 — C12 and ( CcY8 (or DY — DS and Dl&’) these
bounds are constant. The bounds for C + Cl3, Ci8, €3 (or DI§ + D3, D, DY)
are coupled, which makes an analysis of these mequalmes more dﬁ’ﬁcult {see the end
of Section 5).

W to O(C) and W to O(C~!) of the admissible fields satisfying homogeneous
conditions (2.1) and (2.2), respectively, are relatively simple. This is not the case with
W) derived in Section 6 for inhomogeneous conditions (6.2). However, this latter W'’
coincides for a = I to O(C ') with the exact W yielding the exact d/dC, dk/dC at C

= 0. Thus, by taking the lxmlts o —» I__*' in (3.20), (3.21) and a — 1~ in (3.20), (3.22),
we get the exact €19, Ci3, C18, Ci§, CL. Also, as we illustrated numcncally in Figs
3, 4, this W for a # 1 considerably narrows the region Rc, where Clf + Ci8, C%,
C1$ must occur. We conclude that for C < 1 the macroscopic moduli C f1, Chay Chs,
CY%, C% can be approximated in a certain neighbourhood of « = 1 by

Ch=Cclic, Ch=cCl§C, Ch=CBC, CL=CBC, CL=Cyc, 7.1

where C|9, CI3, etc. are given by (3.20)-(3.22).
On the basis of the correspondence principle, (7.1) can be used to define approx-
imate complex macroscopic moduli if the matrix is viscoelastic.
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